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a b s t r a c t

Since the development of 3D computational heat transfer in the early 1970s, construction of the lines of
vector fields has been a fundamental visualisation technique. In addition to the usual velocity lines, the
lines of transport vectors for mass, energy and entropy can be especially relevant to heat and mass trans-
fer. The use of scalar stream functions and vector potentials to ensure that these lines satisfy flux conser-
vation is discussed in this paper by tracing the history of their use for streamline construction. A flux
conservative method that uses an energy vector potential for constructing energy transport lines is
described and its use for constructing 3D heat lines is demonstrated for natural convection in a cavity.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

1.1. History

From the early beginnings of computational fluid dynamics and
heat transfer (CFD/CHT), visualisation of the numerical solution
fields has been almost as important as the solution processes
themselves. The crux of the matter is that for 3D flows there is
no suitable ‘‘whole field” method of flow visualisation as there is
for 2D flow. Moreover, the most obvious method, that of construct-
ing vector lines, is susceptible to errors arising from the forward
stepping nature of the integration procedure and inaccurate inter-
polation of the numerical vector fields.

Prior to the development of 3D computational heat transfer, the
stream function – vorticity method was very popular and the
stream function trivially provided a whole field method of flow
visualisation. Stream function contour lines are the lines the veloc-
ity or mass flux vector field and the difference between the stream
function values of two lines is equal to the volume or mass flow be-
tween them.

Vector potentials or dual scalar stream functions can be used to
represent 3D vector fields and early CHT solutions (Holst and Aziz
[1], Mallinson and de Vahl Davis [2]) of 3D natural convection cav-
ity flows used vector potential – vorticity methods. However there
is no direct relationship between the vector potential and the lines
of the velocity field that it represents. Visualisations of these solu-
tions used planar maps and lines of the velocity vector fields. In
ll rights reserved.
practice issues associated with the prescription of boundary condi-
tions for the vector potential and its lack of utility for visualisation
meant that the vector potential – vorticity method has been almost
completely bypassed in favour of primitive variable CHT methods.

Unlike the vector potential, dual stream functions do have a di-
rect relationship with the lines of the vector field they represent.
The directions of their gradients are normal to these lines and, in
a manner similar to the 2D stream function, areas in stream func-
tion coordinates are proportional to the vector flow rates. Tantalis-
ing as this relationship might seem, the mathematical complexity
of this relationship has precluded the development of a workable
whole field visualisation strategy. Nevertheless, the search for an
appropriate methodology has continued since the early 1970s
when the challenges of 3D visualisation became apparent.

From the author’s perspective, this search started with the real-
isation that potentials of some kind were necessary to ensure that
interpolations of a discrete velocity field were mass conservative.
As will be described in this paper a vector potential, trivially avail-
able as part of a vector potential – vorticity solution, can be used to
provide mass conservative interpolations of a velocity or mass flux
field. The desire to provide mass conservative interpolations from
face centred staggered velocity fields used by PHOENICS (Spalding
[3]) and its precursors led to the development of an algorithm, re-
presented later in this paper, that used these data to integrate path
lines analytically across each computational cell. This algorithm
was embedded in GRAFFIC, (Mallinson [4]) which was first applied
by Pollard and Spalding [5] to visualise flow in a tee-junction and
then became the original 3D post processor for PHOENICS. It is still
the author’s algorithm of choice and the majority of visualisations
presented in this paper have used it.
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Nomenclature

a arbitrary vector
ds element of area (m2)
dv element of volume (m3)
e specific energy (J/kg)
E total energy transport vector (W/m2)
f arbitrary function, or one of the dual stream functions

(m2/s)
f force per unit mass (N/kg)
g one of the dual stream functions (m2/s)
gij metric tensor
g gravitational acceleration vector (m/s2)
h heat transfer coefficient (W/m2K), mesh interval (m)
k thermal conductivity (W/mK)
p pressure (N/m2)
qi curvilinear coordinate (m)
q000 volumetric rate of heat generation (W/m3)
q heat flux vector (W/m2)
_Q heat flow rate (W)
r position vector (m)
s coordinate along a curve (m), specific entropy (J/kgK)
S entropy transport vector (W/m2K)
m mass flux or mass transport vector (=mxi + myj + mzk)

(kg/m2s)
Mx total mass flux through a cell in the x direction (kg/s)
Ra Rayleigh number
t time (s)
t tangent vector (m)

T temperature (K)
v velocity vector (=ui + vj + wk) (m/s)
V volume (m3)
k arbitrary function
q density (kg/m3)
f vorticity (/s)
fm mass vorticity (kg/m3s)
Wm 2D mass stream function (kg/ms)
W vector potential for velocity (m2/s)
We vector potential for the energy transport vector (W/m)
Wm vector potential for the mass transport vector (kg/ms)
U viscous dissipation function (/s2)
h non dimensional Temperature
r deviatoric stress tensor (kg/ms2)
s stress tensor (kg/ms2)
l dynamic viscosity (kg/ms)

Subscripts
b body (force)
M mechanical (energy)
m mass
ref reference
S surface
T temperature or Thermal (energy)
x,y,z Cartesian coordinates
u denotes energy transport vector that includes gravita-

tional potential energy
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A major motivation for writing GRAFFIC was the need to have
3D graphics capability for understanding how dual stream func-
tions might be used. GRAFFIC was written for direct view storage
tube (DVST) technology which, although interactively inferior to
the vector refresh technology that had already been used to con-
struct visualisations of 3D convection, was orders of magnitude
less expensive and provided a realistic graphics display technology
for industrial CFD/CHT. Eventually GRAFFIC was used much more
as a CFD/CHT post processor than it was for dual stream function
research.

Ironically, the parabolic and partially parabolic methods devel-
oped and used by Brian Spalding’s group at that time were, in fact,
amenable to dual stream function representation. This was recog-
nised by Brian Spalding who, in the 1990s, tacitly approved of Ste-
ven Beale’s search for whole field dual stream functions (Beale [6]
– chapter 7) described later in this paper.

1.2. Background of issues and problems

What does visualisation mean? In reality is not just graphics or
colourful images; there are important conservation laws to repre-
sent. When users of CFD solvers and their visualisation methods
produce falsely spiralling streamlines, observation clashes with
intuition. Unfortunately even today, this is a too common reality.
The majority of vector line methods used in commercial software
exhibit such artefacts arising from well documented (e.g. Buning
[7]) inaccuracies in either path integration or field interpolation.

The original motivation for research into improved algorithms
for vector line construction is demonstrated by the natural convec-
tion example shown in Fig. 1. The spiral vector line is a streamline
for this flow. The smoke visualisation provides clear evidence of
the numerically predicted spiralling flow. A 10 cm by 10 cm by
2 cm cavity was heated and cooled by transparent side walls, filled
with smoke and then left to settle before illuminating the vertical
axial plane. The pattern forms naturally as the slowest moving air
loses its smoke particles as they settle on the bottom the cavity
thereby forming a continuous sheet of smoke free air. Although
there are techniques for modelling smoke dispersion through cav-
ity so that, in principle, the image in Fig. 1(b) could be simulated, a
whole field method for constructing stream surfaces and also obvi-
ating false spirals is a necessary target if visualisation tools are to
have the ability to rapidly define the flow as clearly as the smoke
visualisation does.

As reviewed by Mallinson [8] there are several useful visualisa-
tion strategies that can be used for very complex 3D and 4D data
fields. The present discussion will concentrate on the underlying
technology for constructing vector lines. It will also consider the
heat line methods proposed by Kimura and Bejan [9] that are of
course relevant in the context of computational heat transfer. This
paper therefore has two main threads. The first traces the develop-
ment of research that seeks to find ways to construct the lines of
vector fields while accurately maintaining the conservations laws
that are represented by their divergence. The second thread con-
siders heat or energy transport lines, their utility and how they
may be constructed and used for 3D CFD/CHT fields.

2. Concepts and basic equations

2.1. Preliminaries

To set the mathematical context for the discussions in this pa-
per it is worth reviewing some of the basic concepts associated
with the vector fields of fluid dynamics and heat transfer.

An arbitrary vector field, denoted by a, may or may not have
zero divergence. If it does it is described as being solenoidal. The
divergence of a is related to the conservation of a over a control
volume V bounded by a closed surface S by the Gauss divergence
theorem



Fig. 1. Natural convection flow in a window cavity. (a) Computed lines of velocity. (b) Smoke visualisation of vector sheets or stream surfaces.

4010 G.D. Mallinson / International Journal of Heat and Mass Transfer 52 (2009) 4008–4020
Z
V
r � adV ¼

I
S

a � ds; ð1Þ

which says that the total outwards flow of a through the bounding
surface is equal to the volume integral of the divergence of a. Hence
if

r � a ¼ f ; ð2Þ

where f is a scalar function, thenZ
V

fdV ¼
I

S
a � ds: ð3Þ

For a solenoidal vector field r � a ¼ 0 and f = 0 so that the net
flow of a out of the volume is zero. Eq. (1) applies to any volume,
and hence applies to each control volume of a finite volume or fi-
nite element mesh, any combination of control volumes or the
whole solution domain. Eq. (2) is the local representation of the
conservation law.

2.2. Mass conservation, mass flux vector, mass vorticity and 2D stream
functions

Flow fields are described by the velocity vector, v. The conserva-
tion of mass can be written as

oq
ot
þr �m ¼ 0 : m ¼ qv: ð4Þ

The vector m is the mass flux. The form of Eq. (4) identifies m as
the transport vector for mass a concept that will be generalised in
Section 6.

The solenoidal condition for the vector m depends on the time
rate of change of density. For flows where the Mach number is less
than 0.3, m can be considered to be solenoidal.

r �m ¼ 0: ð5Þ

If the fluid is incompressible the density is constant and the
velocity vector, v, is solenoidal. Note that whatever the nature of
the flow, m is locally parallel to v.

The vorticity in the flow is defined by

f ¼ r� v: ð6Þ

Because of the usefulness of Eq. (5), it is convenient to define a
‘‘mass vorticity” fm by
fm ¼ r�m: ð7Þ

The vorticity and mass vorticity are related by

fm ¼ rq� v þ qf: ð8Þ

Initially computational solutions were obtained in 2D, often
using the stream function vorticity method. For consistency with
later discussions a mass stream function for Cartesian coordinates
x and y will be defined here by

mx ¼
owm

oy
my ¼ �

owm

ox
; ð9Þ

where mx and my are the x and y components respectively of the
mass flux vector. The mass vorticity and stream function are related
by

r2
xywm ¼ �fm;z ð10Þ
3. Vector potentials and scalar stream functions

A vector field can be derived from vector potentials or scalar
stream functions. The term scalar potential is used exclusively here
for a function that has its gradient parallel to the vector it is related
to. Scalar stream function gradients are normal to the vector they
generate.

3.1. Vector potentials

Initial extensions of the vorticity stream function method used
a vector potential for velocity. This discussion will use a vector po-
tential for the mass flux vector rather than one for velocity so that

m ¼ r�Wm ð11Þ

As can be readily verified, this representation ensures that m is
solenoidal.

Taking the curl of (11),

fm ¼ rðr:WmÞ � r2Wm: ð12Þ

If the vector potential is chosen to be solenoidal then

r2Wm ¼ �fm; ð13Þ

which is analogous to the usual vector potential vorticity equation.
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3.2. Dual stream functions

An alternative representation is to use two scalar functions f
and g, related to the mass flux vector by

m ¼ rf �rg: ð14Þ

Again, this representation ensures that m is solenoidal. The
functions f and g are called dual stream functions, Yih [10].

Dual stream functions have an important geometrical interpre-
tation. An immediate implication of Eq. (14) is

rf �m ¼ rg �m ¼ 0: ð15Þ

This means that isosurfaces of f and g are stream surfaces for m
(and for v since m is parallel to v) as shown in Fig. 3.

Another interpretation of (14) is that it defines a projection
from physical space to a 3D coordinate system (f,g,s) where the f
and g coordinates are normal to m and s is in the direction of m,
(Fig. 2). Moreover areas in f,g space are proportional to the mass
flow rates through areas in physical space. The functions f and g
are the true equivalents of the 2D stream function wm. This is con-
trary to an often expressed impression (e.g. Mahmud and Fraser
[11]) that the concept of a stream function is invalid for 3D.

3.3. Relationships between dual stream functions, the vector potential
and 2D stream functions

In terms of the 2D mass stream function defined by Eq. (9) the
2D Cartesian stream function wm is equal to the z component of Wm.

Using the conventions here the vector potential can be related
to dual stream functions by

Wm ¼ frg ð16Þ

By taking the curl of this equation, it can be verified that the
vector potential and dual stream function representations of the
mass flux vector are equivalent, i.e.,

r�Wm ¼ r� frg ¼ rf �rg þ fr�rg ¼ rf �rg ð17Þ

For 2D flow described in Cartesian coordinates, if g ¼ zþ c; then
for any function f, f ¼ wm. The dual stream function representation
of 2D in plane flow can also accommodate a through flow, as long
as all three components of the mass flux vector depend on only the
two in-plane coordinates, (Li and Mallinson [12]). This representa-
tion is particularly useful for axisymmetric flows with swirl.

4. Vector lines – streamlines, streak lines and path lines

Visualisation of 3D vector fields is complicated. Vector maps
can be constructed on surfaces in a flow and have been popular
as the default method for visualising vector fields for several dec-
ades. They are far from satisfactory; clarity is difficult to achieve
and visualisations soon become very cluttered. The next most obvi-
ous method is to construct vector lines that are everywhere tan-
R

x

y
z

z = constant

m

Fig. 2. Dual stream function mapping from physical space to stream function space. The
the z axis is directed along the m lines.
gent to the vector field. Although they can be constructed for any
field, the most common are those of the velocity or mass flux fields.

4.1. The construction of vector lines

Given an arbitrary vector, aðr; tÞ which is a function of position
and time the lines of a are everywhere tangent to a. Let rðsÞ be an
arbitrary curve in space where s is a parameter denoting position
along the curve. The tangent t to the curve, is given by

t ¼ dr
ds
; ð18Þ

If t is parallel to a

tðr; tÞ ¼ kaðr; tÞ ) dr
ds
¼ kaðr; tÞ ) dr ¼ kaðr; tÞds; ð19Þ

where k is an arbitrary function.
Now assume that s is a function of t

dr
ds
¼ dr

dt
dt
ds
¼ 1

_s
dr
dt

provided _s – 0: ð20Þ

This leads to

dr
dt
¼ k_saðr; tÞ ) dr ¼ k_saðr; tÞdt: ð21Þ

Eq. (21) is the basis for constructing the lines of a vector field.
An alternative form of (21) for Cartesian coordinates is

dx
axðr; tÞ

¼ dy
ayðr; tÞ

¼ dz
azðr; tÞ

¼ k_sdt: ð22Þ

Using either Eqs. (21) or (22) a given line can be constructed by
integration from a starting point ðr0; t0Þ,

r ¼ r0 þ
Z t

t0

k_saðr; sÞds ð23Þ

These equations apply to any field. The first part of this discus-
sion will consider the velocity or mass flux fields. Later, other fields
related to the thermal structure of a convection heat transfer pro-
cess will also be considered.

4.1.1. Stream, path and streak lines
If a is now replaced by the velocity vector v,

dr
dt
� v ) k ¼ 1

_s
; ð24Þ

and

r ¼ r0 þ
Z t

t0

vðrðsÞ; sÞds: ð25Þ

Streamlines are lines that are constructed tangent to the instan-
taneous mass flux field at a given time, tc.

rðsÞ ¼ r0 þ
Z s

s0

mðrðsÞ; tcÞds: ð26Þ
R'

f

g

m 

region R on a z = constant plane is mapped into R0 in stream function space in which



(a) 

f3,l

f2,s
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f1,w
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f2,n

q1

q2
q3
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f000

f011 f111

f110f010

f001 f101

f100 q1

q2
q3

Fig. 4. Notation for data stored at (a) the corners or (b) the face centroids of a
hexahedral computational cell.

streamline
f∇

g∇
gf ∇×∇=m

g gconst= stream surface

f fconst=  stream surface

Fig. 3. The relationships between dual stream functions, the vector m and its
stream surfaces.
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Path lines are the paths of elements of fluid. They are defined by
applying (25) from a collection of points at a given time. Streak
lines are the path lines that all pass through the same point in
space, i.e. integrate (25) for the same r0 for all time. For steady
fields the streamlines, path lines and streak lines are identical.

4.1.2. Invariant representation of the solenoidal condition
Before discussing details of various methods for constructing

vector lines it is worth considering the behaviour of Eq. (2) with re-
spect to a curvilinear coordinate transformation described by coor-
dinates qi (the superscript has been used as in standard curvilinear
tensor notation). Denote the metric tensor by gij and g ¼ det jgijj.
Then the divergence of an arbitrary vector a can be written as

r � a ¼ 1ffiffiffi
g
p o

oqi

ffiffiffi
g
p

ai
� �

: ð27Þ

Let b ¼ ffiffiffi
g
p

a; then Eq. (27) can be written as

r � a ¼ 1ffiffiffi
g
p obi

oqi
¼ f : ð28Þ

Provided
ffiffiffi
g
p

– 0 this can be replaced by

obi

oqi
¼ ffiffiffi

g
p

f : ð29Þ

For a solenoidal field,

obi

oqi
¼ 0)r � a ¼ 0: ð30Þ

The physical components of a are a�i ¼
ffiffiffiffiffi
gii
p

ai, hence

bi ¼
ffiffiffiffiffi
g
gii

r
a�i ¼

ffiffiffi
g
p

ai: ð31Þ

This means that in so far as the consideration of the divergence
of a is concerned, the construction of the vector lines can be dis-
cussed in terms of the computational coordinates qi without losing
generality. It will be assumed that computational coordinates are
scaled so that they range from 0 to 1 for each cell. It will be under-
stood that the vector field is transformed via Eq. (31).

5. Problems, issues and algorithms that attempt to resolve them

Streamlines for 3D flows first started to appear in the literature
in the early 1970s. Holst and Aziz [1] and Mallinson and de Vahl
Davis [13] presented streamlines for 3D natural convection and
forced flows in enclosures. It was soon realised that the integration
method used to numerically evaluate (25) had to be at least 4th or-
der Runge Kutta. The next observation was the velocity component
interpolations had to satisfy the solenoidal condition (5) exactly,
(Mallinson [14], Mallinson and de Vahl Davis [2]) so as not to intro-
duce false sources that manifest as spiralling lines.
In particular the most common method for interpolating a field
within a mesh cell, the trilinear interpolation, does not necessarily
satisfy the solenoidal condition. Using the notation of Fig. 4, the tri-
linear interpolation of the scalar f can be written as,

f ¼ f000ð1� q1Þ þ f100q1� �
ð1� q2� �

þ f010ð1� q1Þ þ f110q1� �
q2� �

ð1� q3Þ þ f001ð1� q1Þ þ f101q1� �
ðð1� q2Þ þ f011ð1� q1Þ þ f111q1� �

q2� �
q3; ð32Þ

where q1, q2 and q3 are computational coordinates that have been
scaled so that they range from 0 to 1 over the dimensions of a cell.
As can be readily verified, using this interpolation for the compo-
nents of velocity does not, in general, produce a solenoidal vector
field within the cell. However, in practice there will be relationships
between the mesh values point values of the velocity components
that will ensure that at least mass conservation over each cell is sat-
isfied provided the results are properly converged. An interpolation
that embodies those relationships may well produce a solenoidal
velocity field, but typically those relationships are not available to
a visualisation system.

The same comments are also true if an equivalent interpolation
is used in an unstructured mesh. Failure to satisfy mass conserva-
tion completely is the reason why streamlines traced by many of
the major commercial packages may still exhibit false spirals or
pass through solid boundaries, although the latter effect may also
be attributed to inappropriately large time steps (Buning [7]).

In contrast, mass conservative interpolation is readily achieved
when a vector potential is available as part of the solution process.
Mallinson [14] used (32) to interpolate the vector potential and
then applied v ¼ r�W to generate a velocity that automatically
satisfied r � v ¼ 0. This had the effect of reducing the complexity
of the interpolation by automatically finding combinations of the
interpolation coefficients that ensured that the interpolated veloc-
ity field was solenoidal.



Fig. 5. Simple torus flow example described by analytical dual stream functions.
The grey surface is an isosurface of one function the black surface which is an
isosurface of the other function describes the spiralling nature of the flow.
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5.1. Analytical method for advancing through a cell (GRAFFIC
algorithm)

An algorithm developed for GRAFFIC (Mallinson [4]) was the
first to trace a vector line through a computational cell in a single
step. It was written specifically for the face centred staggered grids
used by the precursors to PHOENICS. It is assumed by the algo-
rithm that the face centred velocities algebraically satisfy mass
conservation. Using the notation in Fig. 4(b), let Mx,e denote the to-
tal mass flux through the east face of a cell, i.e., Mx;e ¼ f1;eAe etc., fol-
lowing the very familiar PHOENICS style of notation. Assume that
this flux varies linearly in the q1 direction which will be denoted
with out loss of generality by x relying on the invariance of the rep-
resentation of the divergence (30),

Mx ¼ Mx;w þ
ðx� xwÞ
ðxe � xwÞ

ðMx;e �Mx;wÞ; ð33Þ

with similar expressions for My and Mz. The integration of (22) can
be separated into individual component equations of the form

dx

Mx;w þ ðx�xwÞ
ðxe�xwÞ Mx;e �Mx;wð Þ

¼ dt: ð34Þ

This has an analytical solution (e.g. for the x direction)

x ¼ xw þ exp ðt � t0Þ
Mx;e �Mx;w

xe � xw

	 

Mx;0 �Mx;w

� �
xe � xw

Mx;e �Mx;w
;

ð35Þ

where the suffix 0 represents either a specified starting point or en-
try into the cell. The tracking procedure finds the shortest time
interval that corresponds to the line traversing the cell and then
uses expression (35) to compute the exit coordinates.

This method is still used by the author, although extension to tet-
rahedra for unstructured grids has not been implemented. It has
been used to calculate the bulk of the lines presented in this paper.
As discussed in the introduction, the algorithm was implemented
in GRAFFIC and it is tightly coupled with the data storage systems
used by PHOENICS and other related structured grid codes. The algo-
rithm was described in the open literature by Mallinson [15], but
probably has not been incorporated into any commercial code.

5.2. Dual stream functions for whole field visualisation

As discussed in Section 1, dual stream functions have the poten-
tial to be used as whole field visualisations since their isosurfaces de-
fine stream surfaces in the flow. The issue with their use is
demonstrated by the simple analytical example in Fig. 5. The stream-
line is the intersection of the grey and black isosurfaces. The grey
torus is described by a function that is much simpler in its relation-
ship between physical and stream function space than the other
function. The function defining the black surface is, in fact, multi-val-
ued in terms of its relationship between points on a streamline and
locations in physical space. The grey surface in Fig. 5 defines a closed
region of flow and for this reason single valued stream functions
were called structural stream functions by Reztsov and Mallinson
[16].

For flows where there is no recirculation or spiralling, dual
stream functions can be applied for both visualisation and the solu-
tions process. There is a large body of research describing the
application of dual stream functions to duct flows (e.g. Greywall
[17], Greywall [18], Keller [19]).

5.2.1. Beale’s whole field visualisation system
Beale [20] derived equations for relating dual stream functions

to the velocity field by taking the cross products of m and the gra-
dients of the stream functions. For f,
m�rf ¼ ðrf �rgÞ � rf ¼ ðrf Þ2rg � ðrg � rf Þrf : ð36Þ

Taking the divergence of this equation leads to

r � ðm�rf Þ ¼ r � ððrf Þ2rgÞ � r � ððrg:rf Þrf Þ: ð37Þ

Manipulating the left hand side yields

rf � fm �r � ððrf Þ2rgÞ þ r � ððrg:rf Þrf Þ ¼ 0; ð38Þ

and on rearrangement and applying the same steps for g the follow-
ing pair of equations is produced.

r � ððrf Þ2rgÞ ¼ r � ððrg � rf Þrf Þ þ rf � fm

r � ðrgÞ2rf
 �

¼ r � ðrg � rf Þrgð Þ � rg � fm

ð39Þ

Eqs. (39) are anisotropic diffusion equations that Beale solved
using the Spalding whole field solver. The results presented in
Beale [20] and Beale [21] show promising definition of the struc-
ture of flows around an obstacle and in a free vortex. However,
the streamlines for the free vortex do not exhibit spirals that
should arise from axial flow and this discrepancy, for which an
explanation has not yet been found, remains a topic for future
research.

5.3. Dual stream functions for vector line construction

If dual stream functions cannot easily be used for whole field
visualisation, then they might be useful for constructing vector
lines and surfaces within cells, where the flow can assumed to be
simple and non vortical. This approach has been used to success-
fully trace streamlines for steady flows for structured and unstruc-
tured girds.

For a structured grid, each dual stream function is assumed to
be interpolated tri-linearly using Eq. (32). Rather than use the
interpolations for m directly, the approach taken by Kenwright
and Mallinson [22] was to construct a representation of the flow
through each cell in f,g space and then use that diagram to graph-
ically construct the exit point given an entry or initial point. This
process is straightforward because the trilinear interpolation used
for f and g preserves straight edges when transforming between
computational and stream function spaces. In the diagram in
Fig. 6 only two faces enclose the point representing a streamline;
one is the inlet face, the other the outlet. This algorithm has been
extended for tetrahedral cells in a unstructured mesh by Knight
and Mallinson [23] and Li and Mallinson [24] with the latter using
higher order interpolations for the stream functions which allow
fluid to enter and leave a cell through the same face.



Fig. 6. Dual stream function diagram representing flow through a computational
cell. The dot represents a streamline passing through the cell.
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Examples of a streamline and vortex lines, in a cubical cavity
heated from the side, constructed using the algorithm defined by
(35) are presented in Fig. 7(a). The vortex lines correctly close in
just one loop through the cavity. Lines constructed using a conven-
tional Runge Kutta integration of a tri-linearly interpolated vortic-
ity field defined at cell corners did not necessarily close after one
loop.

Fig. 7(b) has two streamlines; one produced by the analytical
algorithm, the other by the dual stream function method. The flow
is symmetrical about the central vertical plane so that the stream
lines should be mirror images. There are minor differences be-
tween the two tracks and this is typical of the performance of dif-
ferent algorithms applied to the same data. Both sets of tracks are,
however, perfectly mass conserving. They will not spiral outwards
to eventually collide with a boundary. This flow example is also
used for the energy transport line visualisations presented later
in this paper.

6. Heat or energy transport lines

The previous sections have discussed some of the issues asso-
ciated with the construction of lines of vector fields. It is now
worth considering vector fields other than velocity, mass flux
and vorticity that might be of interest in the field of computa-
Fig. 7. Visualisations of natural convection in a cubical cavity heated from the side, Ra =
orientated to show the flow. (b) Streamlines constructed using the analytical (black) and
in Figs. 11 and 12. (For interpretation of color mentioned in this figure the reader is ref
tional heat transfer. For more than two decades there has been
a thread of research regarding how heat lines and an associated
2D heat function can be used to visualise heat transfer pro-
cesses; e.g. Bejan [25], Costa [26,27], Deng and Tang [28,29]. In
particular a recent discussion by Mahmud and Fraser [11] has
prompted the current investigation of how these methods might
be put into a more general visualisation context. The underlying
technology is to construct vector fields that are related to a flow/
transport process and use those vectors to construct visualisation
artefacts.

To date, the heat line methods have concentrated on the lines of
fields for which a suitable stream of heat function can be found,
thereby limiting the utility of heat lines to 2D flows. The recent
work by Mahmud and Fraser [11] has attempted to explore 3D
flows by calculating energy path lines. A single 3D path line was
presented for steady state natural convection in a cavity heated
from the side with Ra = 103.

6.1. Definition of the energy transport vector

The starting point for this discussion is the conservation of en-
ergy equation, the derivation of which can be found in texts such as
Bird et al. [30]. Using the Cartesian tensor notation,
r � ðv � sÞ � o

oxj
ðv isijÞ, where s is the stress tensor (=�s in Bird

et al. [30]), the equation of energy can be written as

q
De
Dt
¼ q000 � r � qþr � ðv � sÞ þ qfb � v; ð40Þ

where e is the specific total energy and is equal to the sum of the
specific thermal and kinetic (or mechanical) energies.

e ¼ eT þ eM : eM ¼
1
2
jvj2: ð41Þ

This definition of total energy does not include potential energy
and follows the convention used by Bird et al. [30] where the grav-
itational work is considered to be part of body force work.

Using continuity (4) and separating out the deviatoric stress
tensor, r,

oqe
ot
þr � ðqevÞ þ r � q�r � ðv � rÞ þ r � pv ¼ q000 þ qfb � v: ð42Þ
104 and Pr = 0.71. (a) Streamline (blue) and vortex lines (black). The view has been
dual stream function (blue) algorithms. This flow is corresponds to that represented
erred to the web version of the article.)



G.D. Mallinson / International Journal of Heat and Mass Transfer 52 (2009) 4008–4020 4015
This can be rewritten as

oqe
ot
þr:E ¼ q000 þ qfb � v; ð43Þ

where

E ¼ ðqeþ pÞv � ðv � rÞ þ q: ð44Þ

The vector E is the transport vector for total energy.
If the body force is conservative, say f � g ¼ �ru, E can be re-

placed by

Eu ¼ ðqeþ quþ pÞv � ðv � rÞ þ q ¼ Eþ quv; ð45Þ

and (43) becomes

oqe
ot
þr:Eu ¼ q000: ð46Þ

If the flow is steady and there is no internal heat generation, the
total energy plus potential energy vector is solenoidal,

r � Eu ¼ 0: ð47Þ

This vector is the most general energy transport vector that is
solenoidal in steady state. It will be referred to here as the general-
ised energy transport vector.

6.2. Energy potentials

The vector potential and scalar function concepts can now be
applied to the generalised energy transport vector to create a
new energy potentials that encompass the 2D heat function.

6.2.1. Energy dual scalar functions
Let the generalised energy transport vector be represented by

two scalar functions

Eu ¼ rfe �rge: ð48Þ

Taking the curl of (48) leads to

r� Eu ¼ r� ðrfe �rgeÞ
¼ ðrge � rÞrfe �rger2fe � ðrfe � rÞrge þrfer2ge: ð49Þ

For 2D Cartesian situations, let

ge ¼ zk; ð50Þ

then

Eu ¼
ofe

oy
i� ofe

ox
j; ð51Þ

and Eq. (49) becomes

r� Eu ¼
o2fe

oxoz
iþ o2fe

oyoz
jþ o2fe

oz2 k�r2fek: ð52Þ

If ofe
oz ¼ 0 is chosen

r� Eu ¼ �r2
xyfek : r2

xy ¼
o2

ox2 þ
o2

oy2 ; ð53Þ

which means that fe corresponds to the heat function used by others
and will be called here the energy stream function.

6.2.2. Energy vector potential
An energy vector potential may also be defined,

Eu ¼ r�We : r �W ¼ 0: ð54Þ

By taking the curl of (54),

r2We ¼ �r� Eu � �fe; ð55Þ

where fe is the ‘‘energy vorticity”.
It is also possible to represent Eu by vector and scalar potentials,

Eu ¼ r�W0e þrue : r2ue ¼ r:Eu and r �W0e ¼ 0 ð56Þ

where W0e may be a different energy vector potential from We. This
performs the Helmholtz decomposition of a non-solenoidal Eu into
its rotational and irrotational parts and could be used when Eu is
non solenoidal (e.g. unsteady flow, or a non conservative body
force).

6.3. Other thermodynamic transport vectors

It is instructive to consider other transport vectors that may
be useful. Although Mahmud and Fraser [11] defined an energy
flux vector that was similar to the generalised transport vector
described above they did not extend the concepts to other trans-
port vectors that may be useful as thermodynamic visualisation
aids.

6.3.1. Mechanical energy
The mechanical energy transport vector is defined by

EM ¼ ðqeM þ quþ pÞv � v:r: ð57Þ

The mechanical energy equation can be taken by forming the
inner product of the velocity vector and the momentum equation
to produce.

oqeKE

ot
þr � EM ¼ pr � v � lU; ð58Þ

or for steady state

r � EM ¼ pr � v � lU: ð59Þ

In general EM is not solenoidal; expansion work is a source of
mechanical energy and viscous dissipation is a sink.

6.3.2. Thermal energy
The thermal energy transport vector ET is defined by

ET ¼ qeTv þ q; ð60Þ

leading to

Eu ¼ EM þ ET : ð61Þ

The thermal energy equation is

oqeT

ot
þr � ET ¼ q000 þ lU� pr � v; ð62Þ

and for steady state

r � ET ¼ lU� pr � v: ð63Þ

The thermal and mechanical energy transport vectors are diver-
gence free only when the effects of viscous dissipation and expan-
sion work can be neglected.

6.3.3. Entropy
To derive similar concepts for entropy, the starting point is the

entropy equation, (Equation 3.4.11 in Batchelor [31])

q
Ds
Dt
¼ jðr � vÞ2

T
þ lU

T
� 1

T
r � q: ð64Þ

Using continuity and rearrangement,

oqs
ot
þr � qsv þr � q

T

 �
¼ jðr � vÞ2

T
þ lU

T
þr 1

T

	 

� q: ð65Þ

The entropy transport vector S can be defined as

S ¼ qsv þ q
T
: ð66Þ
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Using r 1
T

� �
¼ � 1

T2rT

oqs
ot
þr � S ¼ jðr � vÞ2

T
þ lU

T
� 1

T2

	 

rT � q

¼ jðr � vÞ2
T

þ lU
T
þ k

rT
T

	 
2

when q ¼ �krT: ð67Þ

Note that for steady state conditions S is not solenoidal; the
right hand side of (67) represents the volumetric rate of entropy
production.

7. Thermal energy transport lines for natural convection in a
cavity

The example of natural convection in a box heated from the side
can be used to discuss the issues involved in using thermodynamic
transport vector fields for visualisation and for the ways that these
concepts might be used for 3D flows.

The mechanical energy will be considered to be insignificant
compared with the thermal energy, and expansion work and vis-
cous dissipation will both be assumed to be negligible leading to
the following form of the steady state energy equation.

r � eTv ¼ �r � q ¼ r � krT; ð68Þ
Fig. 8. 2D natural convection in a cavity heated from the left side. Ra = 1.4 � 105, Pr = 7. G
Red contours are for the values �0.06, 0.0 and 5.18 for zero or negative href and 0.0, 5
mentioned in this figure the reader is referred to the web version of the article.)
and the thermal energy transport vector is given by

ET ¼ qeTv þ q: ð69Þ

A non-dimensional form of the energy equation is

v � rh ¼ r2h; ð70Þ

where h ¼ T�T0
ðT1�T0Þ

and the density has been assumed to be constant.
The non dimensional thermal energy transport vector is

ET ¼ ðh� hrefÞv �rh: ð71Þ

The source for the vector potential is

r� ET ¼ r� ðh� hrefÞv ¼ rh� v þ ðh� hrefÞr � v

¼ rh� v þ ðh� hrefÞf: ð72Þ
7.1. Bejan’s example and the issue of the choice of href

The original discussion by Kimura and Bejan [9] presented
example heat lines for 2D natural convection in a box heated from
the side for Ra = 1.4 � 105 and Pr = 7. Streamlines and isotherms for
these conditions are shown in Fig. 8(a). The other diagrams in Fig. 8
show energy transport lines for three different values of href. In 2D
rey contour levels are spaced at 0.1 times the range of energy stream function values.
.18 and 5.24 for positive href as explained in the text. (For interpretation of color
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each line has a value associated with the corresponding energy
stream function. The difference between the values of two energy
transport lines is equal to the non-dimensional heat flow between
them.

The choice of href is arbitrary. It could, for example correspond to
the reference conditions for the definition of enthalpy. The conven-
tion introduced by Kimura and Bejan [9] has been to use the lowest
temperature in a flow domain as the reference temperature, corre-
sponding to href = 0. The energy transport lines in Fig. 8(b) exhibit a
recirculation that in fact represents the internal flow of thermal en-
ergy stored in the box. If a lower temperature is taken, href = �2 say,
then the convection of thermal energy is stronger (Fig. 8(c)). The
example, href = 1 has also been included as Fig. 8(d). This reference
value has not been used by previous authors, but is equally valid
being simply the hottest temperature in the box. In this case the
energy recirculation is in the opposite direction.

For this flow, and mesh used, the total non dimensional heat
flow through the left wall is 5.24. This was estimated using a sec-
ond order one sided approximation for the temperature gradient
and trapezoidal integration. Because this approximation is differ-
ent from the central difference approximation used to set the adi-
abatic condition there is a net heat flow of 0.06 through each
‘‘adiabatic boundary”. In Fig. 8(b) the 5.18 contour at the top of
the box indicates how the hot wall supplies the 0.06 leakage
through the top surface. The �0.06 contour leaves the bottom of
the right hand wall and circulates around a central core of rotating
energy. The 0.06 heat flow that leaves the bottom surface passes
around the core to the lowest section of the cold wall. The same
observations can be made for Fig. 8(c) but the boundary around
the circulating core is much thinner. The energy transport lines
in Fig. 8(d) used href = 1 which is the hottest temperature in the
cavity. In this case the 5.24 contour separates the heat flow passing
through the cavity from the circulating flow.

7.2. Proposed use of the mean temperature as the reference

Another choice for the reference temperature is the mean over
the cavity, corresponding to href = 0.5. If this is done the recircula-
tion disappears from the energy transport lines. In Fig. 9(a) the rep-
resentation of the heat flow is much simpler and, in terms of
explaining how the heat flows between the boundaries, the con-
tours have a straightforward interpretation. The heat flow paths
between the boundaries can be readily determined. The results
for Ra = 106 and Pr = 0.71 confirm that energy transport lines for
Fig. 9. 2D natural convection in a cavity heated from the left side. Energy transport lines c
between �0.061 and 5.24 in 10 equal steps. Red contours are for 0.0 and 5.18. (b) Ra =
contour values uniformly distributed between �0.015 and 9.00. Red contours are 0.0 and
web version of the article.)
href = 0.5 show no recirculation at this higher value of Ra. For this
flow the non dimensional heat flow through the hot boundary is
9.00 and there is a 0.15 leakage through the horizontal boundaries
as delineated by the red contours in Fig. 9(a).

7.3. 3D Energy transport lines

3D solutions for the cavity convection problem were obtained
using a vector potential vorticity method and a collocated grid.
This method was deliberately chosen so that the velocity and en-
ergy transport vector data, defined at cell corners, were not neces-
sarily strictly conservative in the context of cell face fluxes. In order
to compare with the results of Kimura and Bejan [9] and Mahmud
and Fraser [11] the thermal energy transport vector was calculated
using href = 0. Results for href = 0.5 are also presented.

As discussed earlier the analytical vector line method (Eq. (35))
is considered to be the most reliable to prevent false spiralling of
vector lines. A technique needed to be found to generate face cen-
tred staggered energy transport vector data (Fig. 4(b)) that satisfied
global conservation.

7.3.1. Generation of the energy vector potential from collocated energy
transport vector data

The method used is described below, and to the author’s
knowledge this technique has not previously been used in any
visualisation context. Although the fluid motion is closed within
the cavity, the energy transport vector represents a through flow
of energy. At a through flow boundary the condition for We is
that its curl must represent the flow of Eu through the boundary.
This was achieved by using the auxiliary potential proposed by
Hirasaki and Hellums [32]. On a through flow boundary the tan-
gential components of the vector potential were found by solv-
ing an equation of the form of (53) with Eu replaced by We

and fe by the auxiliary potential. The source term in this Poisson
equation is by Eq. (54) the component of energy transport nor-
mal to the boundary.

At the boundaries of the convection cavity, the energy transport
vector is equal to the conduction heat flux and its non dimensional
value is oh=on where n is in the direction of the outwards normal.
The auxiliary potential is found by solving its Poisson equation and
is then used to calculate tangential components of the energy vec-
tor potential. At the edges of each boundary the energy vector po-
tential must be continuous and this condition provides enough
information to determine a complete set of boundary conditions
alculated with href = 0.5. (a) Ra = 1.4 � 105, Pr = 7. Grey contour levels are distributed
106 and Pr = 0.71, Streamlines are blue. Black energy transport lines correspond to
8.85. (For interpretation of color mentioned in this figure the reader is referred to the
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for We over all the boundaries of the cavity. Eq. (55) was then
solved to produce We throughout the cavity.

Given We at the mesh nodes in the domain, face centred mass
conservative velocity fields can be readily found and these were
used as data for the algorithm (35) to produce the lines presented
in the following Section.

7.3.2. Example energy transport lines
Heat lines for Ra = 103, Pr = 0.71 and href = 0 are presented in

Fig. 10. This is virtually the same as the example presented by
Mahmud and Fraser [11]. The lines in Fig. 10, however, appear to
describe a vector field that is different from that suggested by
the single line in Fig. 11 of Mahmud and Fraser [11]. That path line
was launched near the low z, low y corner of the hot wall, spiralled
on the y = 0 wall, then along the cavity centreline and finally out-
wards near the y = 0.5 plane to eventually leave the cavity via
the cold wall. Because the fluid adjacent to the y = 0 wall is station-
ary, the heat lines there should be nearly horizontal. For Ra = 103

convection is weak and the influence of the wall is felt for some
Fig. 10. Energy transport lines for 3D convection in a box with Ra = 103 and Pr = 0.71. T
y = 0.05 on the heated surface. (b) A rake of lines launched from y = 0.2. The flow is sym

Fig. 11. Energy transport lines for Ra = 104 and Pr = 0.71. The back wall is heated. (a) Rake
heated wall. Vector map on y = 0.8; the grey energy transport lines identify the self conta
colour in this figure legend, the reader is referred to the web version of this article.)
distance from it. The rake of lines in Fig. 10(a) confirms this expec-
tation and the lines spiral only far from the wall. The fact that the
line constructed by Mahmud and Fraser [11] is spiralling very close
to the y = 0 wall is inconsistent with the boundary conditions.

For this value of Ra there is no completely closed recirculation
of energy within the cavity. There is a small region of spiralling en-
ergy transport lines that are fed from the edge between the heated
wall and the end adiabatic wall. This spiralling energy flow pro-
ceeds to the central symmetry plane where it spirals outwards to
exit the cavity via the cold wall.

If the Rayleigh number is increased the spiralling flow becomes
stronger as illustrated in Fig. 11 for Ra = 104. In this case there is a
single small annular region of recirculation identified by the grey
energy transport lines.

As was the case for the 2D flows, using href = 0.5 removed the
recirculation. The rakes presented in Fig. 12 indicate that the influ-
ence of the end walls propagates strongly through the cavity. The
z = 0.25 rake indicates that the flow has the most influence on
the heat lines in the region of y = 0.25 which corresponds to the
he rear wall is heated and the front one cooled. (a) A rake of lines launched from
metrical about y = 0.5.

of lines leaving from y = 0.01 on the heated wall. (b) Rake leaving from y = 0.2 on the
ined region of energy transport recirculation. (For interpretation of the references to



Fig. 12. Energy transport lines for Ra = 104 and Pr = 0.71, and href = 0.5. (a) Rakes leaving from 0.1 and 0.5 up the heated wall. (b) Rake leaving from 0.25 up the heated wall.
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strong recirculation region identified in Fig. 11 for the href = 0.0
heat lines (fluid motion for this flow is shown in Fig. 7).

8. Conclusion

The first sections of this paper reviewed methods that use a vec-
tor potential or scalar stream functions to ensure that numerically
constructed vector lines properly represent the vector field’s diver-
gence particularly when it is zero. Consideration of vector fields
that may facilitate the understanding of heat and mass transfer
processes has led to the suggestion of a generalised energy trans-
port vector which for steady flows in a conservative body force
field is solenoidal. This vector is the sum of mechanical energy
and thermal energy transport vectors that may not, in general, be
individually solenoidal. An entropy transport vector has also been
suggested. The lines of these transport vectors are generalisations
of the heat lines proposed by Kimura and Bejan [9].

While thermodynamic transport vectors may potentially be
useful for visualisation, it is necessary to re-consider the conven-
tions used to define the reference for temperature in the energy
transport vector’s convection term. The fact that the choice of href

has a significant influence on the form of the energy transport vec-
tor field is of some concern from a visualisation point of view and
may limit the widespread acceptance of the energy transport vec-
tor as an interpretive quantity. If any value other than the mean
temperature is chosen, then the 2D solutions exhibit energy recir-
culation. For the 3D flows, the energy vector lines indicate that the
circulating region is much smaller than for the corresponding 2D
case.

Regardless of the chosen reference temperature there is still the
issue of providing divergence preserving data for vector line con-
struction. Whereas fields produced by a computational heat trans-
fer solver may satisfy conservation those produced by a post
processing algorithm may not. For the examples presented here,
an energy vector potential was derived from the energy transport
vector and used to generate cell face centred data. The resulting
set of visualisations, which are the most comprehensive heat or
thermal line visualisations for a 3D problem presented to date, pro-
vide thought provoking visualisations.

This discussion has traced visualisation developments that stem
from the author’s association with Brian Spalding in the mid 1970s.
The desire to provide rigorous visualisations of the face centred
velocity fields led to the development of a mass conservative
streamline tracing procedure and to the GRAFFIC visualisation soft-
ware. This thread of development has continued with the search
for methods that may produce complete visualisations of the struc-
ture of a 3D flow and the work of Beale [20] which was also influ-
enced by Brian Spalding has been a step in this direction. It is
perhaps fitting that at the time of Brian Spalding’s 85th birthday
vector and scalar potentials may emerge has having relevance to
ensure that visualisations of generalised transport vectors accu-
rately satisfy the conservation laws they represent.
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